Esempi di applicazioni stateful
Questo articolo contiene esempi di codice per applicazioni con stato personalizzate. Databricks consiglia di usare metodi predefiniti con stato per operazioni comuni, ad esempio aggregazioni e join.
I modelli in questo articolo usano l'operatore transformWithState
e le classi associate disponibili in anteprima pubblica in Databricks Runtime 16.2 e versioni successive. Vedi Crea un'applicazione personalizzata con stato.
Nota
Python usa l'operatore transformWithStateInPandas
per fornire la stessa funzionalità. Gli esempi seguenti forniscono codice in Python e Scala.
Requisiti
L'operatore transformWithState
e le API e le classi correlate hanno i requisiti seguenti:
- Disponibile in Databricks Runtime 16.2 e versioni successive.
- Il calcolo deve usare la modalità di accesso dedicata o la modalità di accesso senza isolamento.
- È necessario usare il provider dell'archivio di stato RocksDB. Databricks consiglia di abilitare RocksDB come parte della configurazione di calcolo.
Nota
Per abilitare il provider dell'archivio stati RocksDB per la sessione corrente, eseguire quanto segue:
spark.conf.set("spark.sql.streaming.stateStore.providerClass", "org.apache.spark.sql.execution.streaming.state.RocksDBStateStoreProvider")
Dimensione a cambiamento lento (SCD) tipo 1
Il codice seguente è un esempio di implementazione del tipo SCD 1 usando transformWithState
. Il tipo SCD 1 tiene traccia solo del valore più recente per un determinato campo.
Nota
È possibile usare tabelle di streaming e APPLY CHANGES INTO
per implementare il tipo SCD 1 o tipo SCD 2 usando le tabelle basate su Delta Lake. Questo esempio implementa il tipo SCD 1 nell'archivio stati, che offre una latenza inferiore per le applicazioni quasi in tempo reale.
Pitone
# Import necessary libraries
import pandas as pd
from pyspark.sql.streaming import StatefulProcessor, StatefulProcessorHandle
from pyspark.sql.types import StructType, StructField, LongType, StringType
from typing import Iterator
# Set the state store provider to RocksDB
spark.conf.set("spark.sql.streaming.stateStore.providerClass", "org.apache.spark.sql.execution.streaming.state.RocksDBStateStoreProvider")
# Define the output schema for the streaming query
output_schema = StructType([
StructField("user", StringType(), True),
StructField("time", LongType(), True),
StructField("location", StringType(), True)
])
# Define a custom StatefulProcessor for slowly changing dimension type 1 (SCD1) operations
class SCDType1StatefulProcessor(StatefulProcessor):
def init(self, handle: StatefulProcessorHandle) -> None:
# Define the schema for the state value
value_state_schema = StructType([
StructField("user", StringType(), True),
StructField("time", LongType(), True),
StructField("location", StringType(), True)
])
# Initialize the state to store the latest location for each user
self.latest_location = handle.getValueState("latestLocation", value_state_schema)
def handleInputRows(self, key, rows, timer_values) -> Iterator[pd.DataFrame]:
# Find the row with the maximum time value
max_row = None
max_time = float('-inf')
for pdf in rows:
for _, pd_row in pdf.iterrows():
time_value = pd_row["time"]
if time_value > max_time:
max_time = time_value
max_row = tuple(pd_row)
# Check if state exists and update if necessary
exists = self.latest_location.exists()
if not exists or max_row[1] > self.latest_location.get()[1]:
# Update the state with the new max row
self.latest_location.update(max_row)
# Yield the updated row
yield pd.DataFrame(
{"user": (max_row[0],), "time": (max_row[1],), "location": (max_row[2],)}
)
# Yield an empty DataFrame if no update is needed
yield pd.DataFrame()
def close(self) -> None:
# No cleanup needed
pass
# Apply the stateful transformation to the input DataFrame
(df.groupBy("user")
.transformWithStateInPandas(
statefulProcessor=SCDType1StatefulProcessor(),
outputStructType=output_schema,
outputMode="Update",
timeMode="None",
)
.writeStream... # Continue with stream writing configuration
)
Scala
// Define a case class to represent user location data
case class UserLocation(
user: String,
time: Long,
location: String)
// Define a stateful processor for slowly changing dimension type 1 (SCD1) operations
class SCDType1StatefulProcessor extends StatefulProcessor[String, UserLocation, UserLocation] {
import org.apache.spark.sql.{Encoders}
// Transient value state to store the latest location for each user
@transient private var _latestLocation: ValueState[UserLocation] = _
// Initialize the state store
override def init(
outputMode: OutputMode,
timeMode: TimeMode): Unit = {
// Create a value state named "locationState" using UserLocation encoder
// TTLConfig.NONE means the state has no expiration
_latestLocation = getHandle.getValueState[UserLocation]("locationState",
Encoders.product[UserLocation], TTLConfig.NONE)
}
// Process input rows and update state
override def handleInputRows(
key: String,
inputRows: Iterator[UserLocation],
timerValues: TimerValues): Iterator[UserLocation] = {
// Find the location with the maximum timestamp from input rows
val maxNewLocation = inputRows.maxBy(_.time)
// Update state and emit output if:
// 1. No previous state exists, or
// 2. New location has a more recent timestamp than the stored one
if (_latestLocation.getOption().isEmpty || maxNewLocation.time > _latestLocation.get().time) {
_latestLocation.update(maxNewLocation)
Iterator.single(maxNewLocation) // Emit the updated location
} else {
Iterator.empty // No update needed, emit nothing
}
}
}
}
Dimensioni lentamente variabili (SCD) tipo 2
I notebook seguenti contengono un esempio di implementazione del tipo SCD 2 usando transformWithState
in Python o Scala.
SCD Type 2 Python
Prendi notebook
Scala di tipo 2 SCD
Prendi notebook
Rilevatore di tempi di inattività
transformWithState
implementa timer per consentire di intervenire in base al tempo trascorso, anche se non vengono elaborati record per una determinata chiave in un microbatch.
Nell'esempio seguente viene implementato un modello per un rilevatore di tempo di inattività. Ogni volta che viene visualizzato un nuovo valore per una determinata chiave, aggiorna il valore dello stato lastSeen
, cancella eventuali timer esistenti e reimposta un timer per il futuro.
Quando un timer scade, l'applicazione genera il tempo trascorso dall'ultimo evento osservato per la chiave. Imposta quindi un nuovo timer per generare un aggiornamento di 10 secondi dopo.
Pitone
import datetime
import time
class DownTimeDetectorStatefulProcessor(StatefulProcessor):
def init(self, handle: StatefulProcessorHandle) -> None:
# Define schema for the state value (timestamp)
state_schema = StructType([StructField("value", TimestampType(), True)])
self.handle = handle
# Initialize state to store the last seen timestamp for each key
self.last_seen = handle.getValueState("last_seen", state_schema)
def handleExpiredTimer(self, key, timerValues, expiredTimerInfo) -> Iterator[pd.DataFrame]:
latest_from_existing = self.last_seen.get()
# Calculate downtime duration
downtime_duration = timerValues.getCurrentProcessingTimeInMs() - int(time.time() * 1000)
# Register a new timer for 10 seconds in the future
self.handle.registerTimer(timerValues.getCurrentProcessingTimeInMs() + 10000)
# Yield a DataFrame with the key and downtime duration
yield pd.DataFrame(
{
"id": key,
"timeValues": str(downtime_duration),
}
)
def handleInputRows(self, key, rows, timerValues) -> Iterator[pd.DataFrame]:
# Find the row with the maximum timestamp
max_row = max((tuple(pdf.iloc[0]) for pdf in rows), key=lambda row: row[1])
# Get the latest timestamp from existing state or use epoch start if not exists
if self.last_seen.exists():
latest_from_existing = self.last_seen.get()
else:
latest_from_existing = datetime.fromtimestamp(0)
# If new data is more recent than existing state
if latest_from_existing < max_row[1]:
# Delete all existing timers
for timer in self.handle.listTimers():
self.handle.deleteTimer(timer)
# Update the last seen timestamp
self.last_seen.update((max_row[1],))
# Register a new timer for 5 seconds in the future
self.handle.registerTimer(timerValues.getCurrentProcessingTimeInMs() + 5000)
# Get current processing time in milliseconds
timestamp_in_millis = str(timerValues.getCurrentProcessingTimeInMs())
# Yield a DataFrame with the key and current timestamp
yield pd.DataFrame({"id": key, "timeValues": timestamp_in_millis})
def close(self) -> None:
# No cleanup needed
pass
Scala
import java.sql.Timestamp
import org.apache.spark.sql.Encoders
// The (String, Timestamp) schema represents an (id, time). We want to do downtime
// detection on every single unique sensor, where each sensor has a sensor ID.
class DowntimeDetector(duration: Duration) extends
StatefulProcessor[String, (String, Timestamp), (String, Duration)] {
@transient private var _lastSeen: ValueState[Timestamp] = _
override def init(outputMode: OutputMode, timeMode: TimeMode): Unit = {
_lastSeen = getHandle.getValueState[Timestamp]("lastSeen", Encoders.TIMESTAMP, TTLConfig.NONE)
}
// The logic here is as follows: find the largest timestamp seen so far. Set a timer for
// the duration later.
override def handleInputRows(
key: String,
inputRows: Iterator[(String, Timestamp)],
timerValues: TimerValues): Iterator[(String, Duration)] = {
val latestRecordFromNewRows = inputRows.maxBy(_._2.getTime)
// Use getOrElse to initiate state variable if it doesn't exist
val latestTimestampFromExistingRows = _lastSeen.getOption().getOrElse(new Timestamp(0))
val latestTimestampFromNewRows = latestRecordFromNewRows._2
if (latestTimestampFromNewRows.after(latestTimestampFromExistingRows)) {
// Cancel the one existing timer, since we have a new latest timestamp.
// We call "listTimers()" just because we don't know ahead of time what
// the timestamp of the existing timer is.
getHandle.listTimers().foreach(timer => getHandle.deleteTimer(timer))
_lastSeen.update(latestTimestampFromNewRows)
// Use timerValues to schedule a timer using processing time.
getHandle.registerTimer(timerValues.getCurrentProcessingTimeInMs() + duration.toMillis)
} else {
// No new latest timestamp, so no need to update state or set a timer.
}
Iterator.empty
}
override def handleExpiredTimer(
key: String,
timerValues: TimerValues,
expiredTimerInfo: ExpiredTimerInfo): Iterator[(String, Duration)] = {
val latestTimestamp = _lastSeen.get()
val downtimeDuration = new Duration(
timerValues.getCurrentProcessingTimeInMs() - latestTimestamp.getTime)
// Register another timer that will fire in 10 seconds.
// Timers can be registered anywhere but init()
getHandle.registerTimer(timerValues.getCurrentProcessingTimeInMs() + 10000)
Iterator((key, downtimeDuration))
}
}
Eseguire la migrazione delle informazioni sullo stato esistenti
Nell'esempio seguente viene illustrato come implementare un'applicazione con stato che accetta uno stato iniziale. È possibile aggiungere la gestione dello stato iniziale a qualsiasi applicazione con stato, ma lo stato iniziale può essere impostato solo quando si inizializza per la prima volta l'applicazione.
In questo esempio viene usato il lettore statestore
per caricare le informazioni sullo stato esistenti da un percorso del checkpoint. Un caso d'uso di esempio per questo modello è la migrazione da applicazioni con stato legacy a transformWithState
.
Pitone
# Import necessary libraries
import pandas as pd
from pyspark.sql.streaming import StatefulProcessor, StatefulProcessorHandle
from pyspark.sql.types import StructType, StructField, LongType, StringType, IntegerType
from typing import Iterator
# Set RocksDB as the state store provider for better performance
spark.conf.set("spark.sql.streaming.stateStore.providerClass", "org.apache.spark.sql.execution.streaming.state.RocksDBStateStoreProvider")
"""
Input schema is as below
input_schema = StructType(
[StructField("id", StringType(), True)],
[StructField("value", StringType(), True)]
)
"""
# Define the output schema for the streaming query
output_schema = StructType([
StructField("id", StringType(), True),
StructField("accumulated", StringType(), True)
])
class AccumulatedCounterStatefulProcessorWithInitialState(StatefulProcessor):
def init(self, handle: StatefulProcessorHandle) -> None:
# Define schema for the state value (integer)
state_schema = StructType([StructField("value", IntegerType(), True)])
# Initialize state to store the accumulated counter for each id
self.counter_state = handle.getValueState("counter_state", state_schema)
self.handle = handle
def handleInputRows(self, key, rows, timerValues) -> Iterator[pd.DataFrame]:
# Check if state exists for the current key
exists = self.counter_state.exists()
if exists:
value_row = self.counter_state.get()
existing_value = value_row[0]
else:
existing_value = 0
accumulated_value = existing_value
# Process input rows and accumulate values
for pdf in rows:
value = pdf["value"].astype(int).sum()
accumulated_value += value
# Update the state with the new accumulated value
self.counter_state.update((accumulated_value,))
# Yield a DataFrame with the key and accumulated value
yield pd.DataFrame({"id": key, "accumulated": str(accumulated_value)})
def handleInitialState(self, key, initialState, timerValues) -> None:
# Initialize the state with the provided initial value
init_val = initialState.at[0, "initVal"]
self.counter_state.update((init_val,))
def close(self) -> None:
# No cleanup needed
pass
# Load initial state from a checkpoint directory
initial_state = spark.read.format("statestore")
.option("path", "$checkpointsDir")
.load()
# Apply the stateful transformation to the input DataFrame
df.groupBy("id")
.transformWithStateInPandas(
statefulProcessor=AccumulatedCounterStatefulProcessorWithInitialState(),
outputStructType=output_schema,
outputMode="Update",
timeMode="None",
initialState=initial_state,
)
.writeStream... # Continue with stream writing configuration
Scala
// Import necessary libraries
import org.apache.spark.sql.streaming._
import org.apache.spark.sql.{Dataset, Encoder, Encoders , DataFrame}
import org.apache.spark.sql.types._
// Define a stateful processor that can handle initial state
class InitialStateStatefulProcessor extends StatefulProcessorWithInitialState[String, (String, String, String), (String, String), (String, Int)] {
// Transient value state to store the accumulated value
@transient protected var valueState: ValueState[Int] = _
// Initialize the state store
override def init(
outputMode: OutputMode,
timeMode: TimeMode): Unit = {
// Create a value state named "valueState" using Int encoder
// TTLConfig.NONE means the state has no automatic expiration
valueState = getHandle.getValueState[Int]("valueState",
Encoders.scalaInt, TTLConfig.NONE)
}
// Process input rows and update state
override def handleInputRows(
key: String,
inputRows: Iterator[(String, String, String)],
timerValues: TimerValues): Iterator[(String, String)] = {
var existingValue = 0
// Retrieve existing value from state if it exists
if (valueState.exists()) {
existingValue += valueState.get()
}
var accumulatedValue = existingValue
// Accumulate values from input rows
for (row <- inputRows) {
accumulatedValue += row._2.toInt
}
// Update the state with the new accumulated value
valueState.update(accumulatedValue)
// Return the key and accumulated value as a string
Iterator((key, accumulatedValue.toString))
}
// Handle initial state when provided
override def handleInitialState(
key: String, initialState: (String, Int), timerValues: TimerValues): Unit = {
// Update the state with the initial value
valueState.update(initialState._2)
}
}
Eseguire la migrazione della tabella Delta nell'archivio di stato per l'inizializzazione
I seguenti notebook contengono un esempio di inizializzazione dei valori dell'archivio di stato da una tabella Delta tramite l'uso di transformWithState
in Python o Scala.
Inizializzare lo stato con Delta Python
Prendi notebook
Inizializzare lo stato da Delta Scala
Ottenere notebook
Rilevamento delle sessioni
I notebook seguenti contengono un esempio di rilevamento delle sessioni usando transformWithState
in Python o Scala.
Rilevamento delle sessioni python
Prendi quaderno
Monitoraggio delle sessioni Scala
Prendi notebook
Join di flusso personalizzato con transformWithState
Il codice seguente dimostra un join tra flussi personalizzato tra più stream utilizzando transformWithState
. È possibile usare questo approccio anziché un operatore join predefinito per i motivi seguenti:
- È necessario utilizzare la modalità di output di aggiornamento che non supporta i join tra flussi. Ciò è particolarmente utile per le applicazioni a bassa latenza.
- Dovresti continuare a eseguire operazioni di join per le righe in arrivo in ritardo (dopo la scadenza della filigrana).
- È necessario eseguire unioni tra flussi molti-a-molti.
Questo esempio fornisce all'utente il controllo completo sulla logica di scadenza dello stato, consentendo all'estensione del periodo di conservazione dinamico di gestire gli eventi non ordinati anche dopo la filigrana.
Pitone
# Import necessary libraries
import pandas as pd
from pyspark.sql.streaming import StatefulProcessor, StatefulProcessorHandle
from pyspark.sql.types import StructType, StructField, StringType, TimestampType
from typing import Iterator
# Define output schema for the joined data
output_schema = StructType([
StructField("user_id", StringType(), True),
StructField("event_type", StringType(), True),
StructField("timestamp", TimestampType(), True),
StructField("profile_name", StringType(), True),
StructField("email", StringType(), True),
StructField("preferred_category", StringType(), True)
])
class CustomStreamJoinProcessor(StatefulProcessor):
# Initialize stateful storage for user profiles, preferences, and event tracking.
def init(self, handle: StatefulProcessorHandle) -> None:
# Define schemas for different types of state data
profile_schema = StructType([
StructField("name", StringType(), True),
StructField("email", StringType(), True),
StructField("updated_at", TimestampType(), True)
])
preferences_schema = StructType([
StructField("preferred_category", StringType(), True),
StructField("updated_at", TimestampType(), True)
])
activity_schema = StructType([
StructField("event_type", StringType(), True),
StructField("timestamp", TimestampType(), True)
])
# Initialize state storage for user profiles, preferences, and activity
self.profile_state = handle.getMapState("user_profiles", "string", profile_schema)
self.preferences_state = handle.getMapState("user_preferences", "string", preferences_schema)
self.activity_state = handle.getMapState("user_activity", "string", activity_schema)
# Process incoming events and update state
def handleInputRows(self, key, rows: Iterator[pd.DataFrame], timer_values) -> Iterator[pd.DataFrame]:
df = pd.concat(rows, ignore_index=True)
output_rows = []
for _, row in df.iterrows():
user_id = row["user_id"]
if "event_type" in row: # User activity event
self.activity_state.update_value(user_id, row.to_dict())
# Set a timer to process this event after a 10-second delay
self.getHandle().registerTimer(timer_values.get_current_processing_time_in_ms() + (10 * 1000))
elif "name" in row: # Profile update
self.profile_state.update_value(user_id, row.to_dict())
elif "preferred_category" in row: # Preference update
self.preferences_state.update_value(user_id, row.to_dict())
# No immediate output; processing will happen when timer expires
return iter([])
# Perform lookup after delay, handling out-of-order and late-arriving events.
def handleExpiredTimer(self, key, timer_values, expired_timer_info) -> Iterator[pd.DataFrame]:
# Retrieve stored state for the user
user_activity = self.activity_state.get_value(key)
user_profile = self.profile_state.get_value(key)
user_preferences = self.preferences_state.get_value(key)
if user_activity:
# Combine data from different states into a single output row
output_row = {
"user_id": key,
"event_type": user_activity["event_type"],
"timestamp": user_activity["timestamp"],
"profile_name": user_profile.get("name") if user_profile else None,
"email": user_profile.get("email") if user_profile else None,
"preferred_category": user_preferences.get("preferred_category") if user_preferences else None
}
return iter([pd.DataFrame([output_row])])
return iter([])
def close(self) -> None:
# No cleanup needed
pass
# Apply transformWithState to the input DataFrame
(df.groupBy("user_id")
.transformWithStateInPandas(
statefulProcessor=CustomStreamJoinProcessor(),
outputStructType=output_schema,
outputMode="Append",
timeMode="ProcessingTime"
)
.writeStream... # Continue with stream writing configuration
)
Scala
// Import necessary libraries
import org.apache.spark.sql.Encoders
import org.apache.spark.sql.streaming._
import org.apache.spark.sql.types.TimestampType
import java.sql.Timestamp
// Define a case class for enriched user events, combining user activity with profile and preference data
case class EnrichedUserEvent(
user_id: String,
event_type: String,
timestamp: Timestamp,
profile_name: Option[String],
email: Option[String],
preferred_category: Option[String]
)
// Custom stateful processor for stream-stream join
class CustomStreamJoinProcessor extends StatefulProcessor[String, UserEvent, EnrichedUserEvent] {
// Transient state variables to store user profiles, preferences, and activities
@transient private var _profileState: MapState[String, UserProfile] = _
@transient private var _preferencesState: MapState[String, UserPreferences] = _
@transient private var _activityState: MapState[String, UserEvent] = _
// Initialize state stores
override def init(outputMode: OutputMode, timeMode: TimeMode): Unit = {
_profileState = getHandle.getMapState[String, UserProfile]("profileState", Encoders.product[UserProfile], TTLConfig.NONE)
_preferencesState = getHandle.getMapState[String, UserPreferences]("preferencesState", Encoders.product[UserPreferences], TTLConfig.NONE)
_activityState = getHandle.getMapState[String, UserEvent]("activityState", Encoders.product[UserEvent], TTLConfig.NONE)
}
// Handle incoming user events
override def handleInputRows(
key: String,
inputRows: Iterator[UserEvent],
timerValues: TimerValues): Iterator[EnrichedUserEvent] = {
inputRows.foreach { event =>
if (event.event_type.nonEmpty) {
// Update activity state and set a timer for 10 seconds in the future
_activityState.update(key, event)
getHandle.registerTimer(timerValues.getCurrentProcessingTimeInMs() + 10000)
}
}
Iterator.empty
}
// Handle expired timers to produce enriched events
override def handleExpiredTimer(
key: String,
timerValues: TimerValues,
expiredTimerInfo: ExpiredTimerInfo): Iterator[EnrichedUserEvent] = {
// Retrieve user data from state stores
val userEvent = _activityState.getOption(key)
val userProfile = _profileState.getOption(key)
val userPreferences = _preferencesState.getOption(key)
if (userEvent.isDefined) {
// Create and return an enriched event if user activity exists
val enrichedEvent = EnrichedUserEvent(
user_id = key,
event_type = userEvent.get.event_type,
timestamp = userEvent.get.timestamp,
profile_name = userProfile.map(_.name),
email = userProfile.map(_.email),
preferred_category = userPreferences.map(_.preferred_category)
)
Iterator.single(enrichedEvent)
} else {
Iterator.empty
}
}
}
// Apply the custom stateful processor to the input DataFrame
val enrichedStream = df
.groupByKey(_.user_id)
.transformWithState(
new CustomStreamJoinProcessor(),
TimeMode.ProcessingTime(),
OutputMode.Append()
)
// Write the enriched stream to Delta Lake
enrichedStream.writeStream
.format("delta")
.outputMode("append")
.option("checkpointLocation", "/mnt/delta/checkpoints")
.start("/mnt/delta/enriched_events")
Top-K calcolo
Nell'esempio seguente viene usata una ListState
con una coda di priorità per gestire e aggiornare gli elementi K principali in un flusso per ogni chiave di gruppo quasi in tempo reale.
Top-K Python
Prendi il notebook
Top-K Scala
Prendi notebook