Megosztás a következőn keresztül:


Példa állapotalapú alkalmazásokra

Ez a cikk példakódokat tartalmaz az egyéni állapotalapú alkalmazásokhoz. A Databricks beépített állapotalapú módszerek használatát javasolja az olyan gyakori műveletekhez, mint az összesítések és illesztések.

A cikkben szereplő minták a transformWithState operátort és a hozzá kapcsolódó osztályokat használják, amelyek a Databricks Runtime 16.2-es és újabb verzióiban érhetők el a nyilvános előzetes során. Lásd: Egyéni állapotalapú alkalmazás létrehozása.

Jegyzet

A Python a transformWithStateInPandas operátorral biztosítja ugyanazt a funkciót. Az alábbi példák a Python és a Scala kódját ismertetik.

Követelmények

A transformWithState operátor, valamint a kapcsolódó API-k és osztályok a következő követelményekkel rendelkeznek:

  • A Databricks Runtime 16.2-ben és újabb verziókban érhető el.
  • A számításnak dedikált vagy elkülönítés nélküli hozzáférési módot kell használnia.
  • A RocksDB állapottároló-szolgáltatót kell használnia. A Databricks javasolja a RocksDB engedélyezését a számítási konfiguráció részeként.

Jegyzet

Ha engedélyezni szeretné a RocksDB állapottároló-szolgáltatót az aktuális munkamenethez, futtassa a következőket:

spark.conf.set("spark.sql.streaming.stateStore.providerClass", "org.apache.spark.sql.execution.streaming.state.RocksDBStateStoreProvider")

Lassan változó 1. dimenziótípus (SCD)

Az alábbi kód egy példa az SCD 1. típusának implementálására transformWithStatehasználatával. Az 1. SCD-típus csak egy adott mező legutóbbi értékét követi nyomon.

Jegyzet

Streamelő táblákat és APPLY CHANGES INTO-t használhat az SCD 1-es vagy 2-es típusának implementálásához Delta Lake-alapú táblákon. Ez a példa az 1. típusú SCD-t implementálja az állapottárolóban, amely kisebb késést biztosít a közel valós idejű alkalmazások számára.

Piton

# Import necessary libraries
import pandas as pd
from pyspark.sql.streaming import StatefulProcessor, StatefulProcessorHandle
from pyspark.sql.types import StructType, StructField, LongType, StringType
from typing import Iterator

# Set the state store provider to RocksDB
spark.conf.set("spark.sql.streaming.stateStore.providerClass", "org.apache.spark.sql.execution.streaming.state.RocksDBStateStoreProvider")

# Define the output schema for the streaming query
output_schema = StructType([
    StructField("user", StringType(), True),
    StructField("time", LongType(), True),
    StructField("location", StringType(), True)
])

# Define a custom StatefulProcessor for slowly changing dimension type 1 (SCD1) operations
class SCDType1StatefulProcessor(StatefulProcessor):
    def init(self, handle: StatefulProcessorHandle) -> None:
        # Define the schema for the state value
        value_state_schema = StructType([
            StructField("user", StringType(), True),
            StructField("time", LongType(), True),
            StructField("location", StringType(), True)
        ])
        # Initialize the state to store the latest location for each user
        self.latest_location = handle.getValueState("latestLocation", value_state_schema)

    def handleInputRows(self, key, rows, timer_values) -> Iterator[pd.DataFrame]:
        # Find the row with the maximum time value
        max_row = None
        max_time = float('-inf')
        for pdf in rows:
            for _, pd_row in pdf.iterrows():
                time_value = pd_row["time"]
                if time_value > max_time:
                    max_time = time_value
                    max_row = tuple(pd_row)

        # Check if state exists and update if necessary
        exists = self.latest_location.exists()
        if not exists or max_row[1] > self.latest_location.get()[1]:
            # Update the state with the new max row
            self.latest_location.update(max_row)
            # Yield the updated row
            yield pd.DataFrame(
                {"user": (max_row[0],), "time": (max_row[1],), "location": (max_row[2],)}
            )
        # Yield an empty DataFrame if no update is needed
        yield pd.DataFrame()

    def close(self) -> None:
        # No cleanup needed
        pass

# Apply the stateful transformation to the input DataFrame
(df.groupBy("user")
  .transformWithStateInPandas(
      statefulProcessor=SCDType1StatefulProcessor(),
      outputStructType=output_schema,
      outputMode="Update",
      timeMode="None",
  )
  .writeStream...  # Continue with stream writing configuration
)

Scala

// Define a case class to represent user location data
case class UserLocation(
    user: String,
    time: Long,
    location: String)

// Define a stateful processor for slowly changing dimension type 1 (SCD1) operations
class SCDType1StatefulProcessor extends StatefulProcessor[String, UserLocation, UserLocation] {
  import org.apache.spark.sql.{Encoders}

  // Transient value state to store the latest location for each user
  @transient private var _latestLocation: ValueState[UserLocation] = _

  // Initialize the state store
  override def init(
      outputMode: OutputMode,
      timeMode: TimeMode): Unit = {
    // Create a value state named "locationState" using UserLocation encoder
    // TTLConfig.NONE means the state has no expiration
    _latestLocation = getHandle.getValueState[UserLocation]("locationState",
      Encoders.product[UserLocation], TTLConfig.NONE)
  }

  // Process input rows and update state
  override def handleInputRows(
      key: String,
      inputRows: Iterator[UserLocation],
      timerValues: TimerValues): Iterator[UserLocation] = {
    // Find the location with the maximum timestamp from input rows
    val maxNewLocation = inputRows.maxBy(_.time)

    // Update state and emit output if:
    // 1. No previous state exists, or
    // 2. New location has a more recent timestamp than the stored one
    if (_latestLocation.getOption().isEmpty || maxNewLocation.time > _latestLocation.get().time) {
      _latestLocation.update(maxNewLocation)
      Iterator.single(maxNewLocation)  // Emit the updated location
    } else {
      Iterator.empty  // No update needed, emit nothing
    }
  }
}
}

Lassan változó dimenzió (SCD) típus 2

Az alábbi jegyzetfüzetek egy példát tartalmaznak az SCD 2-es típusának implementálására a Pythonban vagy a Scalában transformWithState használatával.

SCD Type 2 Python

Jegyzetfüzet lekérése

SCD 2-es típusú Scala

Jegyzetfüzet lekérése

Állásidő-érzékelő

transformWithState időzítőket implementál, amelyek lehetővé teszik, hogy az eltelt idő alapján műveletet hajtson végre, még akkor is, ha egy adott kulcs rekordjait nem dolgozzák fel mikrobatchben.

Az alábbi példa egy állásidő-érzékelő mintáját valósítja meg. Minden alkalommal, amikor egy új érték megjelenik egy adott kulcshoz, frissíti a lastSeen állapotértéket, törli a meglévő időzítőket, és visszaállít egy időzítőt a jövőre vonatkozóan.

Ha egy időzítő lejár, az alkalmazás a kulcs utolsó megfigyelt eseménye óta eltelt időt bocsátja ki. Ezután beállít egy új időzítőt, hogy 10 másodperccel később kibocsátsa a frissítést.

Piton

import datetime
import time

class DownTimeDetectorStatefulProcessor(StatefulProcessor):
    def init(self, handle: StatefulProcessorHandle) -> None:
        # Define schema for the state value (timestamp)
        state_schema = StructType([StructField("value", TimestampType(), True)])
        self.handle = handle
        # Initialize state to store the last seen timestamp for each key
        self.last_seen = handle.getValueState("last_seen", state_schema)

    def handleExpiredTimer(self, key, timerValues, expiredTimerInfo) -> Iterator[pd.DataFrame]:
        latest_from_existing = self.last_seen.get()
        # Calculate downtime duration
        downtime_duration = timerValues.getCurrentProcessingTimeInMs() - int(time.time() * 1000)
        # Register a new timer for 10 seconds in the future
        self.handle.registerTimer(timerValues.getCurrentProcessingTimeInMs() + 10000)
        # Yield a DataFrame with the key and downtime duration
        yield pd.DataFrame(
            {
                "id": key,
                "timeValues": str(downtime_duration),
            }
        )

    def handleInputRows(self, key, rows, timerValues) -> Iterator[pd.DataFrame]:
        # Find the row with the maximum timestamp
        max_row = max((tuple(pdf.iloc[0]) for pdf in rows), key=lambda row: row[1])

        # Get the latest timestamp from existing state or use epoch start if not exists
        if self.last_seen.exists():
            latest_from_existing = self.last_seen.get()
        else:
            latest_from_existing = datetime.fromtimestamp(0)

        # If new data is more recent than existing state
        if latest_from_existing < max_row[1]:
            # Delete all existing timers
            for timer in self.handle.listTimers():
                self.handle.deleteTimer(timer)
            # Update the last seen timestamp
            self.last_seen.update((max_row[1],))

        # Register a new timer for 5 seconds in the future
        self.handle.registerTimer(timerValues.getCurrentProcessingTimeInMs() + 5000)

        # Get current processing time in milliseconds
        timestamp_in_millis = str(timerValues.getCurrentProcessingTimeInMs())

        # Yield a DataFrame with the key and current timestamp
        yield pd.DataFrame({"id": key, "timeValues": timestamp_in_millis})

    def close(self) -> None:
        # No cleanup needed
        pass

Scala

import java.sql.Timestamp
import org.apache.spark.sql.Encoders

// The (String, Timestamp) schema represents an (id, time). We want to do downtime
// detection on every single unique sensor, where each sensor has a sensor ID.
class DowntimeDetector(duration: Duration) extends
  StatefulProcessor[String, (String, Timestamp), (String, Duration)] {

  @transient private var _lastSeen: ValueState[Timestamp] = _

  override def init(outputMode: OutputMode, timeMode: TimeMode): Unit = {
    _lastSeen = getHandle.getValueState[Timestamp]("lastSeen", Encoders.TIMESTAMP, TTLConfig.NONE)
  }

  // The logic here is as follows: find the largest timestamp seen so far. Set a timer for
  // the duration later.
  override def handleInputRows(
      key: String,
      inputRows: Iterator[(String, Timestamp)],
      timerValues: TimerValues): Iterator[(String, Duration)] = {
    val latestRecordFromNewRows = inputRows.maxBy(_._2.getTime)

    // Use getOrElse to initiate state variable if it doesn't exist
    val latestTimestampFromExistingRows = _lastSeen.getOption().getOrElse(new Timestamp(0))
    val latestTimestampFromNewRows = latestRecordFromNewRows._2

    if (latestTimestampFromNewRows.after(latestTimestampFromExistingRows)) {
      // Cancel the one existing timer, since we have a new latest timestamp.
      // We call "listTimers()" just because we don't know ahead of time what
      // the timestamp of the existing timer is.
      getHandle.listTimers().foreach(timer => getHandle.deleteTimer(timer))

      _lastSeen.update(latestTimestampFromNewRows)
      // Use timerValues to schedule a timer using processing time.
      getHandle.registerTimer(timerValues.getCurrentProcessingTimeInMs() + duration.toMillis)
    } else {
      // No new latest timestamp, so no need to update state or set a timer.
    }

    Iterator.empty
  }

  override def handleExpiredTimer(
    key: String,
    timerValues: TimerValues,
    expiredTimerInfo: ExpiredTimerInfo): Iterator[(String, Duration)] = {
      val latestTimestamp = _lastSeen.get()
      val downtimeDuration = new Duration(
        timerValues.getCurrentProcessingTimeInMs() - latestTimestamp.getTime)

      // Register another timer that will fire in 10 seconds.
      // Timers can be registered anywhere but init()
      getHandle.registerTimer(timerValues.getCurrentProcessingTimeInMs() + 10000)

      Iterator((key, downtimeDuration))
  }
}

Meglévő állapotadatok migrálása

Az alábbi példa bemutatja, hogyan implementálhat egy kezdeti állapotot elfogadó állapotalapú alkalmazást. A kezdeti állapotkezelést bármely állapotalapú alkalmazáshoz hozzáadhatja, de a kezdeti állapot csak az alkalmazás első inicializálásakor állítható be.

Ez a példa a statestore olvasóval tölti be a meglévő állapotadatokat egy ellenőrzőpont elérési útjáról. Régi állapotalapú alkalmazások transformWithState-ra történő áttérésére példa lehet ez a minta.

Piton

# Import necessary libraries
import pandas as pd
from pyspark.sql.streaming import StatefulProcessor, StatefulProcessorHandle
from pyspark.sql.types import StructType, StructField, LongType, StringType, IntegerType
from typing import Iterator

# Set RocksDB as the state store provider for better performance
spark.conf.set("spark.sql.streaming.stateStore.providerClass", "org.apache.spark.sql.execution.streaming.state.RocksDBStateStoreProvider")

"""
Input schema is as below

input_schema = StructType(
    [StructField("id", StringType(), True)],
    [StructField("value", StringType(), True)]
)
"""

# Define the output schema for the streaming query
output_schema = StructType([
    StructField("id", StringType(), True),
    StructField("accumulated", StringType(), True)
])

class AccumulatedCounterStatefulProcessorWithInitialState(StatefulProcessor):

    def init(self, handle: StatefulProcessorHandle) -> None:
        # Define schema for the state value (integer)
        state_schema = StructType([StructField("value", IntegerType(), True)])
        # Initialize state to store the accumulated counter for each id
        self.counter_state = handle.getValueState("counter_state", state_schema)
        self.handle = handle

    def handleInputRows(self, key, rows, timerValues) -> Iterator[pd.DataFrame]:
        # Check if state exists for the current key
        exists = self.counter_state.exists()
        if exists:
            value_row = self.counter_state.get()
            existing_value = value_row[0]
        else:
            existing_value = 0

        accumulated_value = existing_value

        # Process input rows and accumulate values
        for pdf in rows:
            value = pdf["value"].astype(int).sum()
            accumulated_value += value

        # Update the state with the new accumulated value
        self.counter_state.update((accumulated_value,))

        # Yield a DataFrame with the key and accumulated value
        yield pd.DataFrame({"id": key, "accumulated": str(accumulated_value)})

    def handleInitialState(self, key, initialState, timerValues) -> None:
        # Initialize the state with the provided initial value
        init_val = initialState.at[0, "initVal"]
        self.counter_state.update((init_val,))

    def close(self) -> None:
        # No cleanup needed
        pass

# Load initial state from a checkpoint directory
initial_state = spark.read.format("statestore")
  .option("path", "$checkpointsDir")
  .load()

# Apply the stateful transformation to the input DataFrame
df.groupBy("id")
  .transformWithStateInPandas(
      statefulProcessor=AccumulatedCounterStatefulProcessorWithInitialState(),
      outputStructType=output_schema,
      outputMode="Update",
      timeMode="None",
      initialState=initial_state,
  )
  .writeStream...  # Continue with stream writing configuration

Scala

// Import necessary libraries
import org.apache.spark.sql.streaming._
import org.apache.spark.sql.{Dataset, Encoder, Encoders , DataFrame}
import org.apache.spark.sql.types._

// Define a stateful processor that can handle initial state
class InitialStateStatefulProcessor extends StatefulProcessorWithInitialState[String, (String, String, String), (String, String), (String, Int)] {
  // Transient value state to store the accumulated value
  @transient protected var valueState: ValueState[Int] = _

  // Initialize the state store
  override def init(
      outputMode: OutputMode,
      timeMode: TimeMode): Unit = {
    // Create a value state named "valueState" using Int encoder
    // TTLConfig.NONE means the state has no automatic expiration
    valueState = getHandle.getValueState[Int]("valueState",
      Encoders.scalaInt, TTLConfig.NONE)
  }

  // Process input rows and update state
  override def handleInputRows(
      key: String,
      inputRows: Iterator[(String, String, String)],
      timerValues: TimerValues): Iterator[(String, String)] = {
    var existingValue = 0
    // Retrieve existing value from state if it exists
    if (valueState.exists()) {
      existingValue += valueState.get()
    }
    var accumulatedValue = existingValue
    // Accumulate values from input rows
    for (row <- inputRows) {
      accumulatedValue += row._2.toInt
    }
    // Update the state with the new accumulated value
    valueState.update(accumulatedValue)
    // Return the key and accumulated value as a string
    Iterator((key, accumulatedValue.toString))
  }

  // Handle initial state when provided
  override def handleInitialState(
      key: String, initialState: (String, Int), timerValues: TimerValues): Unit = {
    // Update the state with the initial value
    valueState.update(initialState._2)
  }
}

Delta-tábla áttelepítése állapottárolóba inicializálás céljából

Az alábbi jegyzetfüzetek egy példát tartalmaznak arra, hogy inicializálják az állapottár értékeit egy Delta-táblából a Pythonban vagy a Scalában transformWithState használatával.

Állapot inicializálása a Delta Pythonból

Jegyzetfüzet lekérése

Állapot inicializálása a Delta Scalából

Jegyzetfüzet lekérése

Munkamenet nyomon követése

Az alábbi jegyzetfüzetek egy példát tartalmaznak a pythonos vagy scalai transformWithState használatával végzett munkamenet-nyomon követésre.

Munkamenet-követő Python

Jegyzetfüzet lekérése

Munkamenet-követő Scala

Jegyzetfüzet lekérése

Testreszabott stream-stream összekapcsolás a transformWithState használatával

Az alábbi kód bemutatja, hogyan lehet több adatfolyam között egyéni stream-illesztést végezni a transformWithStatehasználatával. A következő okokból használhatja ezt a módszert a beépített illesztés operátora helyett:

  • Olyan frissítési kimeneti módot kell használnia, amely nem támogatja a stream-stream illesztéseket. Ez különösen hasznos az alacsonyabb késésű alkalmazások esetében.
  • Továbbra is végeznie kell az összekapcsolásokat a későn érkező sorokhoz (a vízjel lejárta után).
  • Több-sok közötti stream-összekapcsolásokat kell végrehajtania.

Ez a példa teljes körű vezérlést biztosít a felhasználó számára az állapotlejárati logika felett, így a dinamikus megőrzési időszak meghosszabbítása lehetővé teszi a rendelésen kívüli események kezelését még a vízjel után is.

Piton

# Import necessary libraries
import pandas as pd
from pyspark.sql.streaming import StatefulProcessor, StatefulProcessorHandle
from pyspark.sql.types import StructType, StructField, StringType, TimestampType
from typing import Iterator

# Define output schema for the joined data
output_schema = StructType([
    StructField("user_id", StringType(), True),
    StructField("event_type", StringType(), True),
    StructField("timestamp", TimestampType(), True),
    StructField("profile_name", StringType(), True),
    StructField("email", StringType(), True),
    StructField("preferred_category", StringType(), True)
])

class CustomStreamJoinProcessor(StatefulProcessor):
    # Initialize stateful storage for user profiles, preferences, and event tracking.
    def init(self, handle: StatefulProcessorHandle) -> None:

        # Define schemas for different types of state data
        profile_schema = StructType([
            StructField("name", StringType(), True),
            StructField("email", StringType(), True),
            StructField("updated_at", TimestampType(), True)
        ])
        preferences_schema = StructType([
            StructField("preferred_category", StringType(), True),
            StructField("updated_at", TimestampType(), True)
        ])
        activity_schema = StructType([
            StructField("event_type", StringType(), True),
            StructField("timestamp", TimestampType(), True)
        ])

        # Initialize state storage for user profiles, preferences, and activity
        self.profile_state = handle.getMapState("user_profiles", "string", profile_schema)
        self.preferences_state = handle.getMapState("user_preferences", "string", preferences_schema)
        self.activity_state = handle.getMapState("user_activity", "string", activity_schema)

    # Process incoming events and update state
    def handleInputRows(self, key, rows: Iterator[pd.DataFrame], timer_values) -> Iterator[pd.DataFrame]:
        df = pd.concat(rows, ignore_index=True)
        output_rows = []

        for _, row in df.iterrows():
            user_id = row["user_id"]

            if "event_type" in row:  # User activity event
                self.activity_state.update_value(user_id, row.to_dict())
                # Set a timer to process this event after a 10-second delay
                self.getHandle().registerTimer(timer_values.get_current_processing_time_in_ms() + (10 * 1000))

            elif "name" in row:  # Profile update
                self.profile_state.update_value(user_id, row.to_dict())

            elif "preferred_category" in row:  # Preference update
                self.preferences_state.update_value(user_id, row.to_dict())

        # No immediate output; processing will happen when timer expires
        return iter([])

    # Perform lookup after delay, handling out-of-order and late-arriving events.
    def handleExpiredTimer(self, key, timer_values, expired_timer_info) -> Iterator[pd.DataFrame]:

        # Retrieve stored state for the user
        user_activity = self.activity_state.get_value(key)
        user_profile = self.profile_state.get_value(key)
        user_preferences = self.preferences_state.get_value(key)

        if user_activity:
            # Combine data from different states into a single output row
            output_row = {
                "user_id": key,
                "event_type": user_activity["event_type"],
                "timestamp": user_activity["timestamp"],
                "profile_name": user_profile.get("name") if user_profile else None,
                "email": user_profile.get("email") if user_profile else None,
                "preferred_category": user_preferences.get("preferred_category") if user_preferences else None
            }
            return iter([pd.DataFrame([output_row])])

        return iter([])

    def close(self) -> None:
        # No cleanup needed
        pass

# Apply transformWithState to the input DataFrame
(df.groupBy("user_id")
  .transformWithStateInPandas(
      statefulProcessor=CustomStreamJoinProcessor(),
      outputStructType=output_schema,
      outputMode="Append",
      timeMode="ProcessingTime"
  )
  .writeStream...  # Continue with stream writing configuration
)

Scala

// Import necessary libraries
import org.apache.spark.sql.Encoders
import org.apache.spark.sql.streaming._
import org.apache.spark.sql.types.TimestampType
import java.sql.Timestamp

// Define a case class for enriched user events, combining user activity with profile and preference data
case class EnrichedUserEvent(
    user_id: String,
    event_type: String,
    timestamp: Timestamp,
    profile_name: Option[String],
    email: Option[String],
    preferred_category: Option[String]
)

// Custom stateful processor for stream-stream join
class CustomStreamJoinProcessor extends StatefulProcessor[String, UserEvent, EnrichedUserEvent] {
  // Transient state variables to store user profiles, preferences, and activities
  @transient private var _profileState: MapState[String, UserProfile] = _
  @transient private var _preferencesState: MapState[String, UserPreferences] = _
  @transient private var _activityState: MapState[String, UserEvent] = _

  // Initialize state stores
  override def init(outputMode: OutputMode, timeMode: TimeMode): Unit = {
    _profileState = getHandle.getMapState[String, UserProfile]("profileState", Encoders.product[UserProfile], TTLConfig.NONE)
    _preferencesState = getHandle.getMapState[String, UserPreferences]("preferencesState", Encoders.product[UserPreferences], TTLConfig.NONE)
    _activityState = getHandle.getMapState[String, UserEvent]("activityState", Encoders.product[UserEvent], TTLConfig.NONE)
  }

  // Handle incoming user events
  override def handleInputRows(
      key: String,
      inputRows: Iterator[UserEvent],
      timerValues: TimerValues): Iterator[EnrichedUserEvent] = {

    inputRows.foreach { event =>
      if (event.event_type.nonEmpty) {
        // Update activity state and set a timer for 10 seconds in the future
        _activityState.update(key, event)
        getHandle.registerTimer(timerValues.getCurrentProcessingTimeInMs() + 10000)
      }
    }
    Iterator.empty
  }

  // Handle expired timers to produce enriched events
  override def handleExpiredTimer(
      key: String,
      timerValues: TimerValues,
      expiredTimerInfo: ExpiredTimerInfo): Iterator[EnrichedUserEvent] = {

    // Retrieve user data from state stores
    val userEvent = _activityState.getOption(key)
    val userProfile = _profileState.getOption(key)
    val userPreferences = _preferencesState.getOption(key)

    if (userEvent.isDefined) {
      // Create and return an enriched event if user activity exists
      val enrichedEvent = EnrichedUserEvent(
        user_id = key,
        event_type = userEvent.get.event_type,
        timestamp = userEvent.get.timestamp,
        profile_name = userProfile.map(_.name),
        email = userProfile.map(_.email),
        preferred_category = userPreferences.map(_.preferred_category)
      )
      Iterator.single(enrichedEvent)
    } else {
      Iterator.empty
    }
  }
}

// Apply the custom stateful processor to the input DataFrame
val enrichedStream = df
  .groupByKey(_.user_id)
  .transformWithState(
    new CustomStreamJoinProcessor(),
    TimeMode.ProcessingTime(),
    OutputMode.Append()
  )

// Write the enriched stream to Delta Lake
enrichedStream.writeStream
  .format("delta")
  .outputMode("append")
  .option("checkpointLocation", "/mnt/delta/checkpoints")
  .start("/mnt/delta/enriched_events")

Top-K számítás

Az alábbi példa egy prioritási üzenetsort tartalmazó ListState használ a stream K elemeinek karbantartásához és frissítéséhez az egyes csoportkulcsokhoz közel valós időben.

Top-K Python

Jegyzetfüzet lekérése

Top-K Scala

Jegyzetfüzet lekérése