Attributes provide a powerful method of associating metadata, or declarative information, with code (assemblies, types, methods, properties, and so forth). After an attribute is associated with a program entity, the attribute can be queried at run time by using a technique called reflection. For more information, see Reflection (Visual Basic).
Attributes have the following properties:
Attributes add metadata to your program. Metadata is information about the types defined in a program. All .NET assemblies contain a specified set of metadata that describes the types and type members defined in the assembly. You can add custom attributes to specify any additional information that is required. For more information, see, Creating Custom Attributes (Visual Basic).
You can apply one or more attributes to entire assemblies, modules, or smaller program elements such as classes and properties.
Attributes can accept arguments in the same way as methods and properties.
Attributes can be placed on most any declaration, though a specific attribute might restrict the types of declarations on which it is valid. In Visual Basic, an attribute is enclosed in angle brackets (< >). It must appear immediately before the element to which it is applied, on the same line.
In this example, the SerializableAttribute attribute is used to apply a specific characteristic to a class:
<System.Serializable()> Public Class SampleClass
' Objects of this type can be serialized.
End Class
<System.Runtime.InteropServices.DllImport("user32.dll")>
Sub SampleMethod()
End Sub
More than one attribute can be placed on a declaration:
Imports System.Runtime.InteropServices
Sub MethodA(<[In](), Out()> ByVal x As Double)
End Sub
Sub MethodB(<Out(), [In]()> ByVal x As Double)
End Sub
Some attributes can be specified more than once for a given entity. An example of such a multiuse attribute is ConditionalAttribute:
<Conditional("DEBUG"), Conditional("TEST1")>
Sub TraceMethod()
End Sub
Note
By convention, all attribute names end with the word "Attribute" to distinguish them from other items in the .NET Framework. However, you do not need to specify the attribute suffix when using attributes in code. For example, [DllImport] is equivalent to [DllImportAttribute], but DllImportAttribute is the attribute's actual name in the .NET Framework.
Attribute Parameters
Many attributes have parameters, which can be positional, unnamed, or named. Any positional parameters must be specified in a certain order and cannot be omitted; named parameters are optional and can be specified in any order. Positional parameters are specified first. For example, these three attributes are equivalent:
The first parameter, the DLL name, is positional and always comes first; the others are named. In this case, both named parameters default to false, so they can be omitted. Refer to the individual attribute's documentation for information on default parameter values.
Attribute Targets
The target of an attribute is the entity to which the attribute applies. For example, an attribute may apply to a class, a particular method, or an entire assembly. By default, an attribute applies to the element that it precedes. But you can also explicitly identify, for example, whether an attribute is applied to a method, or to its parameter, or to its return value.
To explicitly identify an attribute target, use the following syntax:
<target : attribute-list>
The list of possible target values is shown in the following table.
Target value
Applies to
assembly
Entire assembly
module
Current assembly module (which is different from a Visual Basic Module)
The following example shows how to apply attributes to assemblies and modules. For more information, see Common Attributes (Visual Basic).
The following list includes a few of the common uses of attributes in code:
Marking methods using the WebMethod attribute in Web services to indicate that the method should be callable over the SOAP protocol. For more information, see WebMethodAttribute.
Describing how to marshal method parameters when interoperating with native code. For more information, see MarshalAsAttribute.
Describing the COM properties for classes, methods, and interfaces.
The source for this content can be found on GitHub, where you can also create and review issues and pull requests. For more information, see our contributor guide.
.NET feedback
.NET is an open source project. Select a link to provide feedback:
Microsoft Graph Toolkit components are flexible for customization. You can change the behavior of components by using attributes. You can also customize component styling by using CSS custom properties to match your app's branding.